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Abstract

The current study is the second phase of a broad-scoped and systematic study of space

transfer concepts for human Lunar and Mars missions. The one month Technical Dir_tive

5 is a short follow-on to the initial contract. During this period, relevant space

transportation studies were initiated to lead to further detailed activities in the following

study period.
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• INTRODUCTION

The first phase of the technical work carried out in the "Space Transfer Concepts and

Analysis for Exploration Missions" contract performed by Boeing Aerospace and

Engineering under Contract NAS 8-37857 was completed January 1991. In the month

of February, Technical Directive 5 was provided to BA&E for additional tasks relating

to space exploration studies. The activities conducted during this short duration

Technical Directive are described in the text that follows. This initial work is a prelude

for the work to follow on the remaining portion of the contract.

The tasks addressed include:

Vehicle Integration

Aerobrake Integration Analysis

Assembly Operations and ETO Vehicle Size Requirements

Transportation Crew Module and Habitat Update

Radiation Analysis

Flight Dynamics Support

Architecture Assessment, Programmatic Analysis and

Technology Advancement Priorities and Recommendations

Support to MSFC SEI Activities

. i

!

't
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2. VEHICLE INTEGRATION

2.1 Introduction

The Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) Phase 1

study identified the Nuclear Thermal Rocket (NTR) as the most versatile high-performance

candidate for Mars missions for reasonable SEI program scales. The STCAEM Phase 2

Vehicle Integration task, begun in Technical Directive 5 (TD5), is investigating the

integration issues of the NTR propulsion system in sufficient detail to determine system

operations protocols, determine subsystem mass with greater fidelity, identify areas

requiring focused technology development, and develop specific requirements for vehicle

assembly, processing, inspection, verification, use and refurbishment.

SpeciflcaUy, Phase 2 has targeted four areas of work in detailing the NTR propulsion

subsystem:

a. Discussion of issues, options, selections and rationales for the NTR propulsion

subsystem.

b. Schematics and definition of interfaces for the engine/reactor, tanks, propellant feed

lines, pressurization subsystem, and power/data/control lines.

c. Sizing of fluid lines and elecaieal lines.

d. Implications for vehicle test, pre-flight operations ('LEO integration), and in-flight

operations.

TD5 has accomplished the initial portions of work in the first three areas listed. Most effort

has focused on formulating the investigation strategy, developing the calculation

methodologies, and exercising bounded-problem cases pertinent to the NTR design. The

propulsion subsystem involves a complex set of interrelated design issues, and the TD5

effort represents the initial "tip" of that large iceberg. A summary of the NTR propulsion

system definition accomplished so far is followed by technical backup material on line

sizing, the design of the pressurization subsystem, and schematics.

t
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2.2 Subsystem Overview

Solid-core nuclear rocket propellant feed systems are essentially the same as for the I-I2

portion of a I.,H2/LO2 chemical engine. The propellant flowing from the pump enters the

nozzle, flows upward through the neutron reflector surrounding the reactor core, cooling

both the reflector and the control drums contained within it, and through a neutron and

gamma ray shield placed at the upper end of the reactor assembly to limit the radiation-

heating of propellant in the tank. The propellant flows downward through the reactor fuel

element cooling passages,reaching thenozzle inletdesigntemperann'ebeforeexitingthe

nozzleplenum chamber priortobeing dischargedthrough theexhaustnozzle. A portionof

the propellant flow is bled off from thischamber and cooled to an acceptable inlet

temperatureforthe pump driveturbine.This coolingisaccomplished primarilyby mixing

the heated material with cold fluids. A small amount of gas is also drawn from the

turbopump outletforpressurizationof thepropellanttanks.

The propellant fecxl system consists of one or more turbopumps, a propellant source, and a

system of pipes and valves, including control valves. These components differ from similar

components found in liquid chemical rockets only in the modifications required to allow

them to survive and function properly in the reactor radiation environment. Of typical and

primary concern inthisrespectarcvalve seats,seals,bearinglubricants,and rollingcontact

bearing retainers. In cryogenic chemical rockets,these are usually made of organic

martials thatare subjecttoseveredamage under neutronand gamma bombardment. Also,

valve actuatorsin most chemical rocket systems are of the hydraulictype and the fluids

involved would change in a nuclearrocket eitherbecoming highly viscous or evolving

gases under the action of high-energy radiation.Consequently, pneumatically- or

electrically-operateddevicesmust be used inthe nuclearrocketengines.Radiationheating,

though itmust be consideredinthe design,does not pose a significantproblem in.most of

thecomponents of thissystem due to thehigh flow ratesof cryogenichydrogen incontact

with thecomponents.

The principalsubassembly of thepropellantfeedsystem isthe turbopump and theprimary

factorsinfluencingthe design of thisunitare reliability,efficiency,and weight. Pump

efficiency is affected not only by the particular design selected, but also by the net positive

suction head (NPSI-I); i.e., the difference (available at the pump inlet) between the total

absolute pressure and the fluid vapor pressure. This effect is particularly apparent if the

NPSH is low.

T
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An important factor in pump selection involves the characteristics of the start transient.

Unless the pump is rechilled, large thermal gradients will exist in the assembly when the

propellant valve is first opened, and two-phase flow will occur in the system. This

condition will result in some oscillation or pulsation in the flow and may cause engine-start

problems.

2.3 Propellant Feed System /Major Elements Description

The Mars Transfer Vehicle (MTV) umbilicals carry fluids, gases, signals and electrical

power between the tanks and the engine. During engine thrusting, H2 propellant, under an

internal tank pressure, flows to the engine through a series of propellant lines. The

propellant passes through a system of manifolds, distribution lines and valves to the

engine. The valves are under direct control of the vehicle flight control system computers

and are electrically actuated. H2 pressurant gases tapped from the engine are routed back to

the tanks through the gas pressurant lines in order to maintain pressure in the tanks.

a. Tanks - At the forward end of each H2 propellant tank is a vent and relief valve.

This valve is a dual function valve: it can be opened by helium (vent) or excessive tank

pressure (relief). This vent is available only in prelaunch; once lift-off has occurred, only

the relief function is operable. The LI-I2 tanks will relieve at an ullage pressure of 15 psig.

Normal tank ullage pressure range during the mission for the LH2 tanks is l0 to 14.7 psia.

In addition to the vent and relief valves the LH2 tanks have a special purpose vent valve

that is opened during the tank jettison sequence. A thrust force provided by opening the

valve imparts a velocity to the tank to assist in the separation maneuver.

Each H2 tank has four propellant disconnects: two for the LH2 propellant lines (one main

and one redundant) and two for the gaseous H2 pressurant lines (main and redundant).

Major elements included in the tankage system are the following:

(1)

(2)

(3)

(4)

GH2 pressuration lines

].2L2 line and tank-vehicle quick disconnect valves

Fuel depletion sensors

Liquid acquisition devices

D615-I0031-1 9



(5)

(6)

(7)

(8)

(9)

(I0)

Antivortexbafflenearliquidacquisitiondevice

Pressure and temperaturesensors

Tank loadingsensorsLH2 ullagepressuresensors

Specialpurposevalves
MLI and vapor cooled shields

Meteor debrisshield

b. Helium Tank Pressurant System (transient) - Initial (start transient) tank

pressurization is provided by the high pressure helium gas system. Helium gas at 3000-

5000 psia is stored in titanium liner/composite overwrap high pressure tanks. When needed

for tank pressurization, the gaseous helium passes through the pressure regulation,

valveing, and distribution line systems to the H2 tanks to provide tank pressurization until

H2 gas from the engine can be tapped from the turbopumps and routed to the tanks through

the H2 gas pressurant line system.

c. Gaseous H2 Tank Pressurant System (steady state) - Internal pressure in the H2

tanks is maintained by the gaseous H2 for the duration of the propulsive burn.

d. Propellant Line, Valve and Turbopump Cooldown - Approximately 1 hr before

engine start, LH2 propellant is released into and through the propellant delivery system.

This propellantchillsdown allthe LH2 lines,manifolds and valvesbetween the tank and

the engine turbopumps so that the path is bee of GH2 bubbles and is at the proper

temperature forengine start.

e. Post Burn Propellant Tank Jettison - The interface between the individual tank LH2

propellant lines and the vehicle LH2 manifold is a self-sealing quick disconnect. The

interface between the tank GH2 pressurant line and the GH2 manifold is also a self-sealing

quick disconnect. The tank separation maneuver is preceded by valve closure to isolate the

empty tank from the rest of the propellant line system. The tank release mechanism is then

activated, and the tanks are pushed away from the vehicle mechanically. The special

purpose vent valves supplement the separation release mechanism with a small thrust force

driven by tank internal pressure.

f. Tank Attachment and Disconnect - Tank disconnect occurs on the tank side of the

LH2 line manifold. Self sealing liquid and gas quick disconnects are provided to allow the

complete tankage system to be jettisoned after a propulsive burn and also to allow the

)

v
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reattachment of a new fully loaded tankage system in Earth orbit for reuse on another

mission. In addition to the liquid propellant and gaseous pressurant disconnects, power

and data cable disconnects are also provided for.

g. System Verification Tests - It is desirable to have the capability to conduct a

complete checkout test verifying the tankage system and all its subsystems fully loaded on

the launch vehicle while on the pad before launch. After launch and attachment to the

orbiting NTR vehicle, LH2 propellant is transfered to the tank to top off the LH2 level in

the tank. A complete tankage system and propellant flow test is also conducted after vehicle

assembly in orbit for identification and possible replacement of suspect subsystems.

2.4 Propulsion System Schematics

Some schematic diagrams for the hydrogen propellent flow, three turbopurnp engine

configuration, hydrogen and helium gas pressurant flow and hydrogen tank are illustrated

in Figures 2-1 to 2-4.

2.5 Fluid Lines

Different sections of the piping would be exposed to different combinations of cryogenic

temperature, nuclear radiation, and chemical attack by hydrogen. Materials most suitable

for piping are special alloys of aluminum, titanium, and stainless steel. Stainless steel was

chosen for application as the H2 propellant line and the gaseous H2 pressurant lines.

The fact that hydrogen can be used for auxiliary as well as for primary needs implies that

two systems of piping are required. The primary piping is concerned with large flow rates,

intermittent flow, and phase transition from LH2 to GI-I2. The secondary piping is

concerned with low flow rates, continuous flow, and all GH2. These features are

summarized in the Figure 2-5.

2.6 Supporting Data

2.6.1 Propellant Line Size Determination Procedure

The procedure to determine the propellant line size is indicated below.

D615-10031-1 11



a. Friction loss factors were detem_ed for the assumed piping configurations.

b. Reynolds number for given flow rate, and e/d value for stainless steel pipe used to

determine frictionfactor(f)from Moody diagram.

c. Friction loss factor for pipe flow determined (k-fldd).

d. Overalllinepressuredrop calculatedforthesystem (Pdrop=G_.,k)pV2/2).

e. Pressure drops plotted vs. line diameter to identify a reasonable point of

diminishing returns for increased line diameters.

f. Other factorsaffectinglinesizedeterminationsystem operatingparameters,required

mrbopump inducerinletconditions,and the worst case degree of LH2 subcool at the tank

outleL

g. STS linesizingexample servedas a testcaseforthe proposed procedure,although

turbopump inletfluidconditionswere different(higheraccelerationhead availablethan

NTP system).

Sample ca/cu/ations relating to the propel/ant line size and pressure drop arc provided in

Figures 2-6 to 2-11.

2.6.2 Tank Pressurization System Analysis

The assumptions employed intheanalysisarc given below.

a. ConservationNet PositiveSuctionHead (NPSH) value of zeroassumed for

analysis, based on Rocketdyne test results with MK-25 NERVA unit. More advanced

pumps with Iowcr NPSH requirements (i.e. negative) may be available for a future NTP

system.

b. Degree of subcool attainedforH2 by pressurizingstoragetankstoapproximately 6-

8 psi.(41-55kPa)above theirnormal operatingpressure(101.3kPa/15 psia).For example,

15 psito 22 psiincreaseintankpressureresultsin-131d/kg subcool intheLH2. This

D615-10031-1 ;2
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degree of subcool must bc below theenergy added tothefluidby environmental and

pressuram gas heating, and propellant delivery line losses.

c. Environmental heating determined from CRYSTORE boiloff code. Preliminary

analysis results show that aft tank radiation heating effects are small in comparison to

environmental heating(Radiationheating<5% ofenvironmentalheatingduringbarn time,

assuming allneutronsadsorbed atan average energy levelof 2.5McV).

d. Pressurantgas heatingassumed toconsistmainly of freeconvection (duringburn

only),and gas conduction.

e. Deliverysystem propellantheatingdetcm_ed fi'omenvironmentalheating(whilein

deliverysystem),and linelosses.Thisheatingnot a largedriverinthe levelof subcool

loss.IAnc pressurelosses,and thereforelinesizes,can bc determined based on tank

pressuresand NPSH requirements.

f. Pressurantgas requirementstoo high forhelium pressurization.Helium utilizedfor

initialtankpressurization,linechilldown,and engin.cstart-up(first30 seconds of bum).

Hydrogen bleedfrom turbopump utilizedforsteady-stateoperation.

g. Propellant heating after initial over-pressurization mainly due to f_ee and forced

convection at the liquid surface from the pressurant gas (helium and hydrogen). Forced

convection considerrxl small ff suitable diffuser used for pressumnt gas inlet.

h. Free convection heat transfer is the largest single conuibutor to the subcooled

propellant, but it only occurs during bum periods (~ I hour for TMI).

(1) A preliminaryassessme.ntof allowableheatleakallowed inorderforthe

fluidtoremain subcooledfortheentiredurationofthe 3 TMI burns (completed

over approx. 24 hours).

(2) Results showed that the cumulative heating on the TMI propellant would

remain below allowablelimitsffthehight_mperamm turbinebleedgas isboth

throttled(toreduce pressure),and cooled by thepump exitfluidflow below -I00

K beforebeing injectedintothetank.

D615-10031-1 13 ,
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2.6.3

(3) The effects of helium "blanketing" of the fluid were not considered so the

allowable inlet gas texture may be higher.

The initial pressurization system (helium) can be one of two major types:

(1) Internal storage systems require smaller tank sizes, due to the higher He gas

density at 20 FL versus about 180-200 K for external systems. Composite tanks

may not be applicable for this low temperature. The higher storage density is

somewhat offset by the higher density of the helium in the ullage.

(2). External storage systems require higher tankage mass, and also requh-¢

significantly less gas for ullage pressurization. Significant amounts of heat are

transferred to the LH2 from the warmer (180-200 K) helium.

Helium system mass estimates:

(1)

(2)

External System - He--44 kg.

Tanks--250 kg.

Total=-294 kg. (per TMI tank)

Internal System - He--160 kg.

Tanks--220 kg.

Totals-380 kg. (per TMI tank)

Note: High temperature gas

can reduce subcool level by as

much as 0.7 kJ/kg. (-5%).

Propellant line chilldown fluid requirements:

(1) Line Diameter - 10" (25.4 cm.); Length - 70 m.; thickness - 0.4 ram. H2

mass vaporized to bring fluid lines down to 20 K - 225 kg. (This vaporized fluid

can be expanded through the engine to provide a measure of thrust).

Allowable Line Pressure Drop Results

i

J

Some results based upon the allowable line pressure drop are given. (See Figure 2.12)

a. Pressure drop curves utilized to identify acceptable range of line sizes (at "knee" of

curve or below).

7
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b. Minimum ovcrpressurization detcrmincd to provide adequate liquid subcool is

determined (-22 psia).

c. Smallestal.lowablclinesizeselectedtosatisfyprcssm,_drop and energy addition

rexluiremcnts.

(i) Maximum pressuredrop: 22 psi- 14.696psi (operatingprcssurc)=-.-7psia.

NPSH=Pi/p+v2/(2g)-Hvp+Hc

NPSH - Net positivesuctionhead rcquir_ by pump (assumed = o Pa).

Pi - Inlet suction pressure (pressure at storage tank outlc0.

/o. Density of fluid (-70.6 kg./m3).

v - fluid velocity (m/s). g - Acceleration level (m/s2).

Hvp - Vapor pressure of luid at pump inlet (-126700 Pa).

Hc - Pressure head _twccn Pi and cnctcr line of turbopump (Pa.)

Equal toaccelerationhead -prcssur_drop inlines.

Maximum pressuredrop aUowablc intank and deliverypropellantlines

for22 psi tank -3.76 psi* (25.89kPa).

(To provide-21K saturatedliquidI-L2atTP inlet)

* Corresponds to8" tanklinediameter,and 1I-12" main deliveryline

diameter.Line sizesmay bc small ffvalves,bends,etc.minimized.

2.6.4 Boiloff Loss Estimate for Dropping Multi-Use Tank Pressure

Pdrop = 22 psia.-14.7 psia = 7.3 psia (50.3 kPa)

Huid isassumed toreach saturationconditionsattheelevatedpressure(22 psia/150kPa)

a. TMI Tanks

After first burn (2/3 full):

Fluid loss -- 1655 kg.

Vapor loss = 151 kg.

Total 1806 kg.

After second bum (1/3 fill):

Fluid loss -, 828 kg.

Vapor loss _ 302 kg.

Total: 1130 kg.

Grand Total ,,, 2936 kg. (-1.3 % of initial load)

D615-10031-1 15



The fluid losses can be reduced by designing a thermal protection system, and tank

pressurization system that reduces the parasitic heat leak to a minimum, during engine

burn.

2.6.5 Summary and Conclusion

a. Turbopump selection will likely drive both pressurization and delivery system

design. The main focus of this study was deriving a satisfactory procedure for system

design, given pump inlet fluid condition requirements.

b. Process can be automated by assembling the major elements into a computer code.

Improved tank pressurization/heating codes will improve confidence significantly.

c. Assumptions of propellant line bends, branch lines, valves, etc. resulted in

uncertainty in overall pressure drop calculations. Therefore, pressure drops resulting in Pi

values in the range of 22 to 26 psi considered reasonable.

d. Pressurization system selection:

(1) Initial and start-up pressurization - Helium system selected due to its

simplicity and reasonable low overall system mass (--0.4% of propellant mass).

Internal and external systems are close enough in mass to facilitate the decision to

be made based on operational and safety considerations.

(2) Remaining pressurization, after start-up, provided by H2 bleed fi'om

turbopumps, because of the prohibitive mass penalty associated with helium use

(>10mfftank).

e. Allowable temperatureforturbinebleedinletgas may be higherthan~lOOK ff

helium thermal"blanketing"effectfactoredin.

f. H2 recircularion system may be required for propellant supply lines in order to

avoid fluid "geysering", unless adequate insulation is provided. Initial analysis suggests

that approximately 1" MLI is adequate.

k j
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FIGURE 2-5 FLUID LINE CHARACTERISTICS

Mass flowroteofI&.12= 217.8kg/sec,l._ngthofLH2 line- 10ft(30.5m).

Volume flowrate= 3.085m_sec.

Additionallinelosses:4.90" bends,2-45"bends,2valves,3 linebranches.

Vel (rn/sec_ Re,* _ ]f,f_mm

303 (12") 42.3 17166 .0270 2.36 2.702

35.6(14") 31.1 14714 ..0277 2.36 2.376

38.1 (15') 27.1 13734 .028 2.36 2.242

40.6 (16") 23.8 12875 .0286 2.36 2.146

43.2 (17") 21.1 12119 .0297 2.36 2.1

45.7 (18') 18.8 11444 .03 2.36 2.001

50.8 (20') 15.2 10300 .0305 2.36 1.831

55.9 (22") 12.6 9363 .0308 2.36 1.68

61 (24") 10.6 8583 .032 2.36 1.58

_/6(26") 9.01 7923 .0323 2.36 1.492

pdrop (kPa}

319.42

161.31

118.94

89.97

69.89

54.36

34.27

2238

15.62

!1.04

FIGURE 2-6 STS PROPELLANT LINE SIZING EXAMPLE
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• Results relatively close to STS actual line diameter (IT').

• Actual STS line sizing procedure more complicated; Includes iterations due to

available fluid acceleration head, turbopump design limitations, standard line

sizes, etc.

FIGURE 2-7 STS LINE SIZE DETERMINATION EXAMPLE

MIss flow rote of LJ'_ m _).8, 73.6, ! 10,4 _ Lmtgth of LJ.12 line - 40 m.

Volume flow rate- .$213,1.043, 1.564m_s_..

Addithmal lhn Jmseu: 2- 45" _u_Js, 3 valves,2 llnebmss:bes,I sha_ exit(toafttank).

Vel r m,,'see_ Red f _ _

2.54 (1") 1029 34805 .023 3.14 36.3 1._x10 _

4

5.08 (2") 15"71 17405 ,02"7"2. 3.14 21.5 5,745x10

7.6 (3") [ 14.3 11602 .03 3.14 15.8 8712.6

I0 "y(4") 64.3 8702 .031 3.14 17.2 27.38.1

12.7 ($-) 41.2 6962 .034 3.14 10.7 827.I

L5.2 (6") 28.6 $806 .0"35 3.14 9.2 355.9

20.3 (8") 16.1 4358 .039 3.14 7.7 99.0

n

25.4 (I0-) 10.3 3485 * .0425 3.14 6.7 36.7

30.5 (12) 7.14 2901* .044 3.14 5.g 16.1

8", 11", tnd 13" line sizes selected for 1, 2, and 3 engine cases, respectively.

* Flow in critical region.

NTR MAIN PROPELLANT LIIqE DETERMINATION

D615-10031-1 20
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FIGURE 2-9 HYDROGEN LINE SIZING ANALYGIS RESULTS FOR 1, 2, AND
3 ENGINE NTR

Mms flow rote of 1J42 ,, 36.J, 73.6. 110.4 _. Lenl_h of L212 line- 40 m.

Volume flow ntte= .5213, 1.043, 1.564m3/sec.

Additionallinelosses:2 - 45" bends, 3 valves,2 line_, I sha:p exit(toafttank).

yetcrn_,c_ I_ [ k4nm l_=
$

2..54 (l-) 514.3 !7401 .02'/ 1.2S 21.3 2.104x10

5.08 [2") 128.6 8"/02 .0315 ! ,,.2S 12.4 8.0x10 s

7.6 (3-) 5"/.2 5801 .036 1.28 9.45 17.36.6

10.2 (4") 32.2 4351 .039 !.28 9.0 328.3

12.7 (5") 20.6 M85* .042 1.28 6.62 118.6

15.2 (6") 143 2903* .044 1.28 5.8 51.O

20.3 _-) 8.04 2176"* .0305 1.28 3.0 9.79

2_.4 (10-) 5.14 1739 ** .037 1.28 2.91 3.908

30.5 (12") 3.57 1450"* .044 1.28 2.90 1.879

Tmt.rrm//'ff,m#l

6", 7.P', and 9" line sixes selected for 1, 2, and 3 engine cases, respectively.

* Flow in crilical _;,;rm.

*" Flow in laminar., .';,m.

FIGURE 2-I0 NTR TANK PROPELLANT SUPPLY LINE DETERMINATION
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- 75 klb Thrust Engines -

"_O,

_o _'_ ol - _ ._

Se_ _i,_ hLcedon Pdmo
y$. diam_r smutlv_5only

drameniin_ (.-9")

twoengines(-?.Y')

onec=!_¢ (--6")

m 1EnSms
• 2 Engimm
= 3_

loft5 12 14_35

FIGURE 2-I I TMI/MOC TANK LINE SIZING ANALYSIS RESULTS FOR I, 2, AND

3 ENGINE NTR

Selected PI = 22 psia. (151.6 kPa.)

Tnnk i,lne Dis- flnJcm._ Delivery Line DI2. (InJem.'l

41 I0 8120 74.3 1512.1

6/15 8/20 37.91261.2

6 / 15 10 / 25 29.6 / 203.8

6/15 12/30 26.8/184.9"

8 / 20 8 / 20 32.5 / 224.4

8 / 20 10 / 25 24.2 / 167.0"

8/20 12/30 21.5/148.1"

10 / 25 tO / 25 23.5 / 162.3"

10 125 12 / 30 20.8 / 143.5"

* Denotes acceptable candidate line size combination.

FIGURE 2-12 FINAL LINE SIZING ANALYSIS BASED ON ALLOWABLE
PRESSURE DROP

v
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, AEROBRAKE INTEGRATION

During the cm'rent technical directive, the study addressed materials and structmal concepts

for the aerobrake. The initial work is being performed for the I.JD=0.5 aerobrake

configuration which was developed in the Phase I work.

3.1 Properties and Processing of Intermetallic Titanium
Aiuminides

3.1.1 Abstract

Although full maturity of the technology is at least ten years in the future, intermetaUic

titanium aluminide-based alloys are expected to compare favorably against superalloys in

weight critical aerospace structures where high temperature strength, high elastic modulus,

and resistance to oxidation is required. Titanium aluminides have been suggested for a

reusable Mars excursion vehicle (MEV) for precisely these reasons (Reference 3-1).

Successful use of titanium aluminides in such applications requires a detailed understanding

of material properties and limitations. The focus of this study has been to examine the

properties and processing characteristics of these materials with a goal of identifying

specific technology development needs.

3.1.2 Introduction

Interrnetallic phases within the titanium-aluminum system have been known to exist for

over 30 years (Reference 3-2). In many applications, these hard, brittle compounds were

considered undesirable because they tend to form at grain boundaries causing a reduction in

toughness and ductility. Similarly, titanium alloys reinforced with alumina ceramic fibers

resulted in brittle failure of titanium alumim'de intermetaUic compounds at the fiber/matrix

interface. Since about 1973, however, titanium aluminides have been under investigation

for theirpotentialuse in lieuof nickel-basedsuperalloysin aircraftturbineengines and

hypersonic vehicle structures.Work has focused both on dispersionstrengtheningof

titanium matrices by precipitationof intermetallicphases and upon creation of new

structural alloys based on titanium aluminide intcrmetallic compounds.

Atomic bonding in titanium aluminide intermetallics is not entirely metallic in nature; there

is a degree of covalent character such that the valency electrons are not entirely mobile

within the material. The electrons may be considered to be constrained within a specific
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lattice by hybridization of titanium's 3p and 4s orbitals. This hybridization of bonds is

believed to contribute to lattice ordering which is a major factor explaining the high

temperature strength and stiffness of titanium aluminide compounds.

3.1.3 Alloying Elements and Their Effects

Commercially pure titanium is an allotropic material, existing in the HCP lattice structure

(alpha phase) below 882"C and BCC lattice structure (beta phase) above 882"C. Alloying

elements are added to titanium primarily for three reasons: 1) to change the phase

transformation temperature and thereby stabilize or adjust the relative amount of each phase

present: 2) to cause solution strengthening or improve the maxtensitic haxdenability of the

resulting alloy; and 3) to improve some specific property such as oxidation or corrosion

resistance. Aluminum has long been an important alloying element in commercial titanium

alloys. Addition of aluminum in the range of 20-50 atomic percent aluminum (10-35

weight per cent aluminum) provides solution strengthening and significantly increases the

transformation temperature (beta transus). The titanium-aluminum equilibrium phase

diagram, as it is currently understood, is shown in Figure 3.1 (Reference 3-3).

Substitutional alloying elements perform essentially the same function in titanium

aluminides as in conventional (disordered) titanium alloys, such as Ti-6A1-4V, if they do

not enter into the ordering reaction to a significant degree. Tantalum, vanadium, and

niobium are the preferred substitutional beta stabilizers because they are isomorphous the

beta phase titanium. The addition of vanadium makes complete beta-to-alpha

transformation upon cooling impossible and therefore can be used to control the portion of

beta phase which is stable at room temperature. Zirconium is unique in that it is

isomorphous with both the alpha and beta phases of titanium and may be used to solution

strengthen titanium alloys without affecting the transformation temperature. Niobium,

vanadium, and molybdenum are often used to improve both strength and oxidation

resistance of titanium alloys (Reference 3-4).

3.1.4 Properties of Titanium Aluminide lntermetallics

Of the four intermetallic phases depicted on the titanium-aluminum equilibrium phase

diagram (Ti3Al, TiA1, TiAI2, and TiAI3), only alpha-2 (Ti3AI) and gamma (TiA1) based

alloys axe presently considered to have commercial significance. The others have not

proven feasible to produce using current processing practices due to the narrow

,,._I
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composition ranges over which they exist and their high rate of strain hardening. Since

alpha-2 and gamma based alloys are the focus of the majority of titanium aluminide

research, the majority of this study is directed toward the characteristics of these

compounds. Some of therelevantpropertiesof alpha-2and gamma titaniumaluminidesin

comparison with a conventionalTi-6AI-.4Valloyarc summarized inFigure3-2 (References

3-4, 5, 6, 12 & 13).

a. Yield Strength and Elastic Modulus - The high yield strength and elastic modulus

which is characteristicof titanium aluminide compounds at temperatures approaching

approximately one-halftheirmelting point (Tin)isbelievedtodepend upon thedegree of

long range ordering.Ordering leadstosomewhat strongeratomic bonding; thestrengthof

these bonds being proportionaltoelasticmodulus. But perhaps a more significantfactor

affectingmechanical propertiesisthe behaviorof crystallinedefectsknown as anti-phase

domains. In both alpha-2and gamma titaniumalumirn'des,anti-phasedomains may consist

of stackingfaultsaswell as unfavorableatomic interactionsbetween "nearestneighbor"or

"nextnearestneighbor" atoms. Compared torandomly dispersedsolidsolutionsof similar

composition, ordered intermemlliccompounds exhibita high degree of resistanceto slip.

Anti-phase domains play an important rolein thisbehavior. However, mechanisms by

which thisoccursare not fullyunderstood (References3-7 and 3-8).

b. Ductility and Fracture Behavior - Titanium aluminides are notoriously brittle at

ambient to moderate operating temperatures. The elongation of alpha:2 compounds is only

about 2% at tomperatures below approximately 0.5Tin. Thus far, a maximum of about 5%

elongationin thistemperaturerange has been achieved by modifying thecompound. The

brittlenessof ordered alloysis attributedto a lack of sufficientslipsystems to permit

deformation atthe grainboundaries. Studiesof otheraluminide compounds indicatethat

ductilityissu'onglydependent upon the superlatticestructureand mildly dependent upon

the degre,c of long range ordering. Fractureof intermctaUiccompounds most frequently

resultsfrom int_rgranularclevagearisingfrom a buildup of dislocationswain energy.

Above approximately 0.5Tm, increasedcross slip,dislocationclimb,and other thermally

activateddislocationactivityresultsin higherductility.Consequently, a brittle-to-ductile

transitionisobserved. Methods of improving the low temperature ductilityof ordered

materialsincludethe selectiveuse of alloyingelements,controlof grainsize,and thermo-

mechnical processing techniques. The addition of small quantitiesof niobium, for

example, isfound toreduce the brittle-to-ductiletransitiontemperatureof Ti3Al to about
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600"C by the formation of Nb2A1. The success of alloying elements in improving low

temperatu_ ductility is believed to lie in the ability of favorable constituents to segregate to

grain boundaries and relieve localized swain. Dispersions of niobium aluminides are

thought to enhance titanium aluminides by this mechanism (Reference 3-9). Improving the

ductility of intermetallic ma_ at low to moderate operating temperatures continues to be

the subject of intensive research.

c. Oxidation Resistance - The oxidation resistance of aluminide compounds is high

because all of these compounds contain a large atomic fraction of aluminum. The higher

the aluminum content, the higher the oxidation resistance. For this reason, the TiA13

compound has been suggested for use as an oxidation resistant coating material for other

titanium aluminidc compounds. Aluminizing of titanium aluminides might be accomplished

by thermal spraying, molter metal dipping, or pack cementation. Upon exposure to high

temperature oxidizing environment, titanium aluminides readily form an adherent titania

(TiO2) and/or alumina (A1203) scale which protects the substrate alloy from further

oxidation, see Figure 3-3 (Reference 3-10). Certain alloying agents such as niobium,

when added in sufficient quantity have been shown to improve oxidation resistance up to

850"C by entering into ternary re.actions which promote the formation of titania and alumina

products.

d. Strain Hardening - Long range ordered alloys usually exhibit high strain hardening

rates compared to their disordered counterparts, making them extremely difficult to

process. However, in the Ti3AI lattice, the strain hardening rate is substantially unaffected

by temperature up to about 700"C. Studies show that the strain hardenability of gamma

Ti3AI + Mo alloys increases proportionally with stress amplitude below 700"C by a build

up of planar bands of basal dislocations (Reference 3-11). The role of superlattice

dislocations in strain hardening is the subject of ongoing investigations, but the strain

hardening phenomena of Ti3A1 enables the alloy to be strengthened by thermo-mechanical

processing techniques which are similar to conventional methods. Strain hardening is also

expected to improve erosion resistance of intermetallic alloys, in some cases abrigating the

need for protective surface coatings.

L'

V _

3.1.5 Fabrication and Processing Techniques

ALloys based on alpha-2 titanium aluminides are now being demonstrated in a wide variety

of parts utilizing both conventional and innovative new manufacturing technologies.

D615-I0031-I 26



Research and development for specific applications is continuing at the Air Force Wright

Aeronauticallaboratoryand atnumerous aerospacecompanies. Some of the applications

which have been demonstrated are listed in Figure 3-4 (References 3-3, 3-5 & 3-14). The

basic difficulty being experienced in development arc problems of reproducibility and

homogeneity. Titanium aluminides are more sensitive to property variations as a result of

small changes in composition or processing conditions than conventional alloys, and arc

therefore more difficult and more expensive to process.

Bulk form titanium aluminides are normally obtained by powder metal processing (e.g. hot

isostatic pressing), or by vacuum arc melting and casting. Forming may be accomplished

by high temperature extrusion or a procedure of repeated cold roiling and recrystallization

to sequentially reduce gauge thickness. Rapid solidification techniques, such as drop

casting and melt spinning, have been successfully used to refine grain size and limit

segregation during solidification. As might be cxpe, eted, intcrmctallie alloys arc difficult to

forge. Additions of reactive alloying elements arc being investigated to improve hot

formability and recluee sensitivity to metallurgical impurities and contamination.

3.1.6 Summary and Conclusions

In summary, intcrmetallic phases of titanium aluminide which have been known to exist

since the early days of titanium metallurgy am now being developed for applications in high

temperature aircraft turbine engine and hypersonic vehicle strucna'cs. Very low ductility at

ambient to moderate operating temperatures continues to be the major obstacle to their

widespread use. Metallurgical engineers are actively pursuing research related to

deformation behavior, with a goal of designing new alloys which overcome the inherent

limitations of this class of materials. Selective use of alloying elements, grain size control,

and thermo-mechanieal processing techniques arc the prima_ means of modifying material

behavior. However, most properties and characteristics arc directly attributed to the basic

lattice composition and structure.

Fabrication technologies using alloys based on alpha-2 titanium aluminides arc currently

being demonstrated in prototype hardware. Many of the conventional processing

methodologies may be adapted to these ordered compounds, but careful attention must be

paid to process control in order to minimize variability of physical properties in the finished

product. Difficulties in fabrication make titanium aluminide parts very expensive to
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produce. Nevertheless, the trend towards higher performance in weight critical aerospace

applications makes continued development impe_tive.

3.2 Aerobrake Structural Integration

A totalof nine tasks arc planned for developing and trading aerobrake structural

configurations.Three of the tasks,literaturesurvey,preliminarysizing,and analysistool

reviews were completed for one con..Igurationof the aerobrake. The fourthtask,which

included constructinga preliminaryfiniteelement model, was initiated.The remaining

tasksrulatetotheanalysis,optimizationand structuraldesignfortheconfiguration.

Groundrulcs and assumptions which were establishedpriortotaskcommencement are as

follows:

a. The baselineaerobrakegeometry isthecurrentBoeing L/D 0.5aerobrakeconcept.

b. Payload (MEV) mass is83 metrictonncs.

c. Maximum deceleration(duringaerocapturcmaneuver) is6g ata relativewind angle,

RWA = 20 degrees.

d. 6g aerocapmm isworst case.

Three tofivesu'ucua-alconceptswillbc analyzedand developcd forminimume°

mass.

f. Materialselectionswillbe based on concurrent,independenttradesand technology

projectionswhich areoptimizedforeach structuralconcept being considered.

The specifictaskresultsarediscussedbelow.

a. Task 1, Literature Review - Aerobrake structural work performed by North

Carolina State University and NASA Langley Research Center was reviewed to ensure that

there would be no unnecessary duplicationof effort. It was determined that,due to

differencesin assumptions and aerobrakegeometry and structuralconcepts,the previous

work was incornplcteand did not provideenough evidcncc fortradingallcurrentconccpts.

b. Task 2, Design Configuration-The fastconcept chosen foranalysisconsistsof a

semi-monocoque shellof sandwich constractionwith advanced composite / laminate

materials. For purposes of preliminarysizingfor inclusionin the initialfiniteclement

model, the shcllwas assumed to be a monolithicshellof sphericalsection.The material

-I
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was assumed to be titanium A uniform sandwich configurationwas thendeveloped which

provides stiffnessequivalenttothe monolithicshellata reduced weight.

c. Task 3, Design Simulations - The capabilitiesand limitationsof ANSYS and

NASTRAN finiteelement programs were reviewed to evaluate their suitabilityfor

performing stressanalysis of aerobrake structures.Specifically,the available f'mite

elements and program featureswillbe considered in selectingan appropriateprogram for

mathematical simulationand analysisof theacrobrakestructm'es.

The ANSYS program has beam, shell,solid,and composite elements tosimulate different

design configurations. Italso has compatible thermal elements to perform coupled

thermal/stressanalyses.The followingare applicableelements foraerobrakeapplication.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

3-D spar, STIF8

3-D beam, STIF4

3-D plastic shell, STIF43

3-D quadrilateral shell, STIF63

Isoparametric shell, STIF93

Isoparametric solid, STIF45

Anisotropicsolid,STIF64

Layered composite shell, STIF91 and STIF99

Layered composite solid, STIF46

Reinforced composite solid, STIF65

Combinations of the above elements will be used to simulate different design

configurationssuch as monocoque shell,space frame, stiffenedsemi-monoeoquc shell,

etc.The layeredelements willbc used forcomposite materialapplications.The capabilities

and featuresof each element arc summarized inFigure3-5.

Nastran has thefollowingelements formodeling acrobrakestructures:

a.

b.

C.

d.

CBEAM

Triangular shell, CTRIA3 and CTRIA6

Quadrilateral shell, CQUAEM and CQUAD8

Solids, CHEX20
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The Nastran elements are similar to ANSYS elements except that they do not support

orthotropic materials. These elements lack other options also, including large deflection,

stress stiffening, and variable element thicknesses but are still sufficient for simulating the

expected aerobrake structural elements. The Nastran program does not provide a wide

choice of elements for modeling composite materials as ANSYS does. A summary of

Nastran element features is given in Figure 3-6.

In summary, both ANSYS and Nastran elements can adequately be used in developing

finite element models of the aerobrake structures. ANSYS, however, has elements more

suitable for modeling composite materials. It also has extensive pre/post-processing

capabilities which Nastran lacks. Other useful features of ANSYS include design

optimization and a larger dement library compred to Nastran and may therefo_ be a better

choice to model and analyze aerobrake structures.

d. Task 4, Preliminary Finite Element Model - Due to its immediate availability,

IDEAS Supertab was used for pre-processing and preparation of the initial aerobrake

model. This model wiU be converted to ANSYS for analysis and subsequent iterations

and/or modifications.

i

The preliminarymodel consistsof thinshellelements which definethe aerobrakegeometry.

These elements arc loaded by element face pressures as calculated in an separate

aerodynamics analysis.The pressureloading isvariableand ranges from 0 atthe aftlip

sectionto 13,675 Pascalsatthe stagnationpoint.The loaded model isshown inFigure 3-

7. Note thatthe pressm'cvectorsdo not representmagnitudes and arcnot scaled.A scaled

left-sideand frontviews of thepressuredistributionsarcshown inFigure 3-8.

Physicaland material propertiesarebeing finalizedforinclusionin themodel.
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TWO MOST IMPORTANT ALUMINIDES: ALPHA-2 AND GAMMA 3

TI-6AI-4V

(alnha*beta)
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Pleltlng Temp. ('I:) 1700
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I'lax. Temp for 5:38

C_-eep ('0
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UT$ (2_C') I I00
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FIGURE 3-2 TYPICAL PROPERTIES OF'ITI'ANIUM ALUMINIDE ALLOYS VS.

CONVENTIONAL TITAN1UM Ti-6A1-4V ALLOY
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FIGURE 3-4 TITANIUM-ALOE TECHNOLOGY DEMONSTRATIONS
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o Assembly Operations and ETO Vehicle Size

Requirements

Within this Phase 1I section of the STCAEM study, initial on-orbit assembly systems for

the NTR vehicle were evaluated for continued study in the Phase III portion of the contract.

To the set of assembly platforms that were generated in the fwst phase of the contract,

(Figures 4.1 - 4.2) several additional concepts were added. A brief discussion of these

concepts are provided.

4.1 Gantry-Rail Platform

This configuration allows access to all parts of the vehicle and gantry with storage and

support platforms to be attached to the upper surface of the rail away from the vehicle ( no

interference with the track), Figure 4-3. The vehicle is held by standoffs from the rail

which may be easily removed after vehicle departure. The mobile gantry is large enough

to clear all parts of the vehicle including the tanks and aerobrake. The rail itself is a

reinforced, but still light truss-type structure. The First Element Launch (F'EL) will be

requi.,_ to deploy, assemble the system and make it operational.

The concerns are:

(1)

here).

(2)

help).

The gantry may have to be counter balanced (storage platform may help

There may be a vehicle balance problem (again storage platforms may

(3) The rail will have to be stiff to keep the gantry centered.

(4) Detachment of the vehicle from the platform will require some delicate

maneuver capability on both the vehicle and platforms' parts.

(5) The rail joint-truss release my not be simple.

The advantages arc:

(1)

(2)

(3)

(4)

It is a relatively simple platform.

It has low mass.

The attachment points are generally simple.

It has full access to the length and circumference of the vehicle.

v
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(5) Itcan be mused easilyor be used forotherpurposes on orbit.

4.2 Modified I-Beam with Lazy Susan

This is the same configuration described by the Phase I I-Beam arrangement with the

additionof the turntablethatattachesbetween the vehicletrussand the platform central

beam, Figure 4-4.All the advantages and disadvantages of the I-Beam form arc present

with theadditionof an extended reach advantage atthe priceof some complicationin the

"lazy susan" turntable.

4.3 Common Hab and Assembler/Servicer

This configurationinvolvesmodifying a pressurizedMTV crew habitatwithan ACRV and

airlockby reinforcingthe end domes and attachingroboticarms tothem and reinforcinga

circumference panel to accept an articulated RMS arm and power/control cable, Figure #,-5.

It attaches to the NTR truss by the circumference panel RMS and maneuvers around the

vehicle and along the truss. It is crew controled and will run off the vehicle facilities. A

FEL will be required to initiate the operations.

The concerns arc:

a. It requires a redesign of the NTR MTV habitat.

b. The complexity of the habitat increases greatly.

c. Manipulating the robot arms with limited visibility may be a sensitive operation.

d. It is almost free floating and when maneuvering objects, particularly massive ones,

will have to be secured.

e. It has very limited storage.

f. It may increase orbital operations time.

g. It may have limited reuse.ability.

h. It requires extensive crew involvement in the operations.

i. It may require early launch of auxiliary or disposable systems such as power

(arrays).

The advantages are:

a. No unnecessaryinfrastructure.
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b.

C.

The assembly crew is present during operations.

The Assembly/Servicer may or may not be used as the MTV Transit Hab.

4.4 Tethered Robotic Assembly Platform

This platform consists of a long beam perpendicular to the NTR truss that has a continuous

tether system anchored off the ends of the NTR truss, Figure 4-6. At least a pair of,

possibly four, mobile RMS robots travel along the tether to pick up parts stored on the

beam and assemble the vehicle. These robots can rotate about the tether. The beam is long

enough to allow the robots to clear the tanks. The power is supplied to the robots by

batteries that are recharged from the platform main power supply. The tether truss is

deployable, but an FEL mission is necessary to deploy the vehicle truss with GN&C,

communications and reboost RCS, attach the central truss and deploy the solar array, attach

the tether system and the MTV habitat module and attach berthing and storage fixtures.

Localized debris shielding will be used on the vehicle to protect it. The tether and tether

beam can be removed from the vehicle and stored on orbit.

The conc(.-_rl$ arc:

?

a,

b.

C.

d.

O.

f.

g.

h.

Refurbishment of thevehiclesystemspriortodeparturemay be difficult.

Vibrationson thetethermay interferewithrobotmovement and operations.

Large objects cannot be stored on the tether, and the storage on the beam is limited.

CTV and delivery vehicle docking or berthing will be delicate operations.

Placement of the solar arrays is still an open question.

The EVA requitm_ents are undefined but likely to be large.

The mode of on orbit storage is still undefined.

The length of the central beam is over I00 meters.

The advantagesare:

a.

b.

C.

d.

Itisa deployable structure.

Itcan be discardedafterthe vehicleassembly iscomplcte.

Itcould be launched inone flight.

Itwilllikelyhave relativelylow cost.

D615-10031-1 40



4.5 Assembly Ball Platform Concept

This isan assembly box similartothe gantryin the Gantry -RailPlatform design,except

that there is no rail and the gantry is mobile on the NTR truss itself, Figure 4-7. The

assembly ball is self contained in power, thermal control, communications and storage. The

robotic arms are mobile over the lip of the ball therefore they can work inside or outside the

ball. The concerns and advantages are shown in Figure 4-8.

4.6 H-O Assembly Platform Concept

This platform is a large strong truss structure that is a modified Gantry -Rail Platform with

a large attached non-mobile truss bay opposite the vehicle assembly area and no mobile

gantry, Figure 4-9. The function of the mobile gentry is taken up by the platform robotics

for component placement after the component has been assembled in the bay area. The

concerns and advantages are shown in Figure 4-10.

4.7 General Requirements

All the assembly platforms will fly in a gravity gradient stabilized mode. These were

evaluated against a set of known requirements and common sense criteria. The known

requirements must be satisfied either by the platform itself or a combination of the vehicle

and platform together. There is the tendency to burden the platform with most of the

shared needs in order to prevent degradation of critical Mats vehicle systems. Core

requirements that must be satisfied arc: the ability of the platform-vehicle to have reboost

eapability for orbit maintenance, GNC and communications station (EVA and robotic),

storage space for equipment not in use and parts, berthing space for a CTV (cargo transport

vehicle) and/or the delivery vehicle, sufficient power and power distribution prior to,

during and after the vehicle is at the platform, adequate lighting for both robotic operations

and EVA including transition in occultation, thermal control for the platform (perhaps

temporary for the vehicle) equipment, accessibility both by EVA and robotic arms to all

portions of the vehicle, robotic arms for assembly operations, position reference sensors

for platform/robot/vehicle relative positioning, vehicle and equipment tie-downs to the

platform, EVA tic-downs, local or global debris shielding, EVA housing for astronauts

working around the vehicle-platform (may be provided by the CTV) and safety/escape

provisions for these astronauts. These requirements had to be judged in the light of

reasonable expectations of program and vehicle demands. That is, we could not expect to
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have the platform and its construction put a demand on the development costs, launch

schedule and complexity or the on-orbit operations equal in magnitude to the construction

of the Space Station, neither could a platform system be inflexible to the point of excluding

the known NTR vehicle design set nor create a major impact to the top-level NTR

configurations. These evaluations could, for the most part, be accomplished without the

subsystem level NTR configuration being completely identified. The results of this

analysis is given in Figure 4-11.
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FIGURE 4-3 ON-ORBIT ASSEMBLY CONCEPTS
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e CREW MODULES

The Earth Crew Capture Vehicle (ECCV), as configured earlyin the Phase 1 study,was

designed to return four crew to Space Station Freedom following a Mars mission. The

present vehicle has evolved into a direct entry capsule for a crew of six, and is also being

considered for returning four crew from an early Lunar mission. As the evolved ECCV

does not capture, but returns direct to Earth, a more appropriate acronym for the vehicle

might be the Crew Return Vehicle (CRV). Assumptions and mission modes for both the

Lunar and Mars casesare shown inFigure5.I.

There arc currentiyseveral studiesunderway for design of an Assured Crew Return

Vehicle (ACRV) for use at Space StationFreedom, and of a Personnel Launch System

(PLS) thatwould ferrycrew toand from space stationusingan expendable launch vehicle,

such as the Titan Four. Both of these systems arc currentlybeing designed as short

duration(1-10day )crew modules, and thereforehave some commonality with the CRV.

Sources of dataforconfigurationof theCRV, and sizingofit'ssubsystems,arcthe Boeing

PLS, Apollo CM and NASA Langley CERV. The NASA standard3000 isused as an aid

indeveloping efficientand habitablecrew volumes. The reference6 crew CRV isillustrated

in three orthagonal views in Figure 5.2.The Lunar version of the vehicle would bc

configuredwith only 4 crew couches.

V

During thisstudy,questions arose concerning the need for a higher L4D, and greater

crossrangefortheCRV. A decisionwas made tobrieflystudya possibleconfigurationthat

would satisfyboth Lunar and Mars mission modes, and also offer higher crossrange

capability,lower g loads on entry,and greaterlanding siteavailability.The preliminary

configuration for the high I./D CRV is shown in Figure 5.3.

The high I.JDCRV isassumed toflyata relativewind anglethatwould produce an I../Dof

.aproximately 1.0,and would utilizea parachuteor parafoilsystem for finaldescent and

landing.Further work on thistaskwillincludetrajectoryand heatinganalysisfor both the

referenceand high L/D configurations,estimationof g loadson thecrew during entry,and

investigationof"dry" landingsystems.There willalsobc continuedwork on su'ucturaland

heatprotectionsystems thatwillhave apositiveimpact on themass ofthevehicle.

D615-I0031-1 50



Assumptions

• Dh'_ entry CRV need not be common with SSF
ACRV due to higl_r entry velocity

• Tsndcn Dkcct Ltmar missions will be limited in

number, making _tbility a lo_'r priori_.

• CRV payload mass is relatively low( c_w, surface
samples and dam), allowing parachute or pamfoil
landing.

• CRV propulsion limited to ACS

• LTV wuvid_s power prior to earth entry

Mission Modes

* 10 day nominal duration for 4 c_ew.

• 30 days on Lunar $arfa_ in "powereddown"
mode without cr_w.

. Separation from LTV 24 hoursorlessprior

todin_ F.arthentry.

• Panw.hute or parafoil descent and "dry"

landing.

FIGURE 5-1A LUNAR CRV, ASSUMPTIONS AND MISSION MODES

Assumptions

• Direct entry CRV need not be common with SSF
ACRV due to higher entry velocity

• Direct entry missions will be limited in

number, making reusabmty a lower priority.

CRV payload mass is relatively low( crew, surface

samples and data), allowing para_ute or parafoil
landing.

CRV propulsion limimd to ACS

MTV provides power prior to earth entry

Mission Modes

* 24 hour duration for 6 crew.

* Up to I000 days attached to MTV in
"powenxl down" mode

Separatim_ from MTV 24 hours or less prior
to dinx:t Earth mmy.

Pan_ute or parafofl descent and "dry"
tanding.

@

FIGURE 5-1B MARS CRV, ASSUMPTIONS AND MISSION MODES
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FIGURE 5-2 CRy CONFIGURATIONS

/

F/GUR2 5-3 HIGH L/D CRV CONF/GURATIONS
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6.0 FLIGHT DYNAMICS

Modifications to the Boeing PLANET cocl_ were underway for the duration of TD5. These

modifications were concerned with one way contours with embedded deep space

maneuvers (DSM). Work has proceeded well and preliminary C3L and total delta-V

contours have been generated for a few test dates. C3L is defined as the square of the

departure hyperbolic excess velocity. Verification of the accuracy of this contour

generating routine is now being performed through comparisons with DSM data provided

by Marshall Space Flight Center and the Jet Propulsion Laboratories.

A C3L contour for the 2025 opportunity is shown in Figure 6-1. This contour is a typical

1-way Earth-to-Mars contour with no DSM's simulated during the transfer. Note that for

thisregionof mission space the C3L valuesarc relativelylargewith valueson the orderof

200 km2/s 2. A C3L contourforthe identical2025 opportunity,but with embedded DSM's

simulatedfor the transferisshown inFigure 6-2. A comparison of C3L valuesfrom these

two figuresindicatesa significantand generaldecreaseinlaunchenergy requirementsover

directtransfersthrough utilizingDSM's. As a specificexample, acomparison ismade of

C3L valuesfortheJulianlaunch dateof 2460330. For thislaunch date,theminimum C3L

value shown in the directtransfercontour isapproximately 220 km2/s2; a minimum C3L

of approximately 45 km2/s2 is shown in the DSM contour. This differencein C3L

translatesintoa departuredelta-V differenceof about 5.7 km/s for a space stationtype

circularorbitalaltitudeof 500 kin. Also, itcan be seen forthe 2460330 launch date that

the DSM minimum C3L value has been shiftedahead by some 30 days. An explanationof

this arrival date shift is found in realizing that for a particular launch date a DSM trajectory

will be a longer and a lower energy trajectory, thus an intuitively later arrival date is

expected.

Some examples of launch-date/arrival-datehave been found forwhich the PLANET DSM

searchroutinewillnot finda trueminimum energy trajectory.This problem isthought to

be related to certain high energy "ridge" related anomalies. A simple ridge-oountermcasure

algorithm has been implemented for general ridge related trajectories, but for these

aforementioned anomalies, a modification of the search routine must be made to increase

the initial mid-point radius vector used as an initial guess for the DSM location.
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Further PLANET modifications will be made allowing for the generation of round trip

contours with embedded DSM's. This round trip procedure will search the prescribed

mission space forpotentialDSM's fortheoutbound and inbound legsof the trajectory.

I
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0 ARCHITECTURE ASSESSMENT, PROGRAMMATICS

ANALYSIS, AND TECHNOLOGY ADVANCEMENT

Several activities were conducted in these areas. A brief discussion on the topics examined

are provided. A presentation was made on "Power Beaming". The presentation material is

provid_ in Appendix A.

7.1 Beam Power Electric Orbit Transfer Vehicle

7.1.1 The Case for Power Beaming

Frequently mentioned as power sources for electric propulsion arc nuclear and solar electric

generators. Power beaming is a third option, one which removes much of the power

generation mass from the vehicle, offering the potential for greatly improved performance.

It is possible to beam power by charged particles, neutral particles, or electromagnetic

waves. Practical means of converting particle beams to useful electric power at the receiver

are not at hand, leaving electromagnetic waves, either microwaves or laser beams, as

candidates for beaming power to transportation vehicles.

7.1.2 Microwave vs. Laser

Microwave power beaming received considerable study and technology attention during

several solar power satellite (SPS) studies from 1968 through 1981. SPS design studies

considered beaming as much as 5000 megawatts net delivered electric power from large

satellites in geosynchronous orbit to receiving stations on Earth. Laboratory tests

demonstrated more than 50% end-to-end (elecrical to electrical) efficiency. An experiment

at the JPL Goldstone station demonstrated efficient receiving of more than 30 kWe electric

power from a high-power transmitter (the entire wansmitted lobe was not intercepted by the

receiver). A Canadian experiment demonstrated continuous powered flight of a microwave-

powered model airplane. The ah-plane carried a lightweight microwave power receiver;, its

propeller was driven by the resulting electric power. The main argument for microwave

transmission is efficient power transfer. The main argument against microwave power

transmission is large aperture products at long distances, i.e. very large phased-array

antennas are necessary.
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High-power lasershavebeendevelopedin weaponsresearch,mainly SDI but also as

potential battlefieldweapons. Experimental lasershave destroyed targetsin flight.

Experiments have demonstrated principlesof adaptiveopticsforhigh beam quality.Power

transferexperiments have demonstrated coupling of laserenergy through windows to gas

flowing ina laser"combustion" chamber, and to solarcells.Laboratory testshave shown

greaterthan 50% efficiencyinconvcrtinglaserlighttoclcctricity.High efficiencyresults

because thc monochromatic laserlightismatched to the solarcellband gap.Much of the

broad-spectrum sunlightreceivedby a solarcellisnot wellmatched and eitherisconverted

inefficientlyor not atall.

Laserssuitableforpower beaming to spacevehicleswillprobably bc of theelectric-to-laser

energy type. There arc two principalcandidates,free-electronlasersand solid-state

quantum-well devices.The latterofferhigherefficiencybut arc small devices;very large

numbers would have to bc phase-locked inan array.A free-electronlaserconvertsenergy

in a high-power electronbeam tolaserlight.The power from a singledeviceislimitedonly

by the power in the electronbcarn and by the power capabilityof the optics.End-to-end

efficiencyestimatesrange from about 5% to about 20%, compared to 50% demonstrated

and projectionsas high as 70% formicrowaves.

Ifthe power beam source ison Earth,the lower efficiencicsin the laserrange arc not of

primary concern. For example, an EOTV mission to the Moon might use 10 megawatts

electricpower for4000 hours.At 5% efficiencyand 5 cents/kWh, thecostofpower is$40

million.The high propulsiveefficiencyof a power-beam EOTV would save atleastone

I--ILVflightworth atleast$200 million.

Laser power beaming alsoreduces concern for solararraycost.Trades performed on this

study indicatedthatsolararraycostisa major issuefor solar-electricpropulsion systems

and thatpresent-daycosts(-$1000/watt) arc about a factorof ten too high foreconomic

electricpropulsion service.Laser power beaming addressesthisissue by incTcasingthe

power deliveredper unitarray areaby about a factorof ten,e.g.four suns'intensityand

more thantwice the arrayefficiency.

7.1.3 Inclined Orbits

Analyses of power beaming to electricorbittransfervehiclesby Raytheon have proposed

equatorialbeaming sitesand equatorialorbitsformaximum power beam availabilitytothe
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EOTV. This, however, precludes U. S. space operations from U. S. launch sites, e.g.'

KSC. A most conservative view would constrain the EOTV starting orbit to 28.5 degree

inclination and power beaming sites to U. S. locations (Hawaii included). In the case of

inclined orbits, it is better to place the power beam sites at latitudes close to the orbit

inclination for maximum power beam availability.

7.1.4 Beam EOTV Simulator

A beam-power EOTV simulator has been developed to answer the key questions associated

with inclined orbit operations. These questions are stated in Figure 7-1. The features of the

simulator are summarized in Figure 7-2.

7.1.5 The "Unwrap" Condition

Boeing space transportation studies performed many years ago determined that there is a

critical acceleration level at which the low-thrust spiral about a central body "unwraps" to

an escape trajectory, and that this critical acceleration level is about 1/(2*pi) times the local

gravitational acceleration of the central body. At this level, the energy added to the orbit in

one revolution is equal to the energy needed for escape. Available acceleration is related to

power-to-mass ratio and Isp. The following table gives typical power-to-mass ratios in

kg/kWe for "unwrap" acceleration at typical distances from the Earth:

Isp 1500 see 10,000 see

Radius

10,000 0.2 0.03

50,000 5.0 0 .75

100,000 20.0 3.0

200,000 80.0 12.0

LEO radius is about 6800 kin. GEO radius is about 40,000 kin. Lunar radius is about

400,000 kin. 1500 seconds is a typical arcjet Isp; 10,000 is typical for ion thrusters. A

typical beam power EOTV system would be at 5 to 10 kg/kWe, including propellant and

payload. These "unwrap" conditions apply for continuous power availability.
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7.1.6 Initial Simulation Results

We conducted an initial beam power EOTV simulation to get an idea of the power-on duty

cycle for only continental U. S. sites, and to address the question whether sites

concentrated in one geographical locale would lead to highly elliptic orbits due to "periapsis

pulsing". Results are shown in Figures 7-3 and 7-4. An acceptable rate of orbit raising was

achieved. The turn-over of eccentricity indicates that Earth rotation effects and secular

advance of the line of apsides prevents excessive ellipticity of the transfer orbit. We will

continue EOTV simulations to better determine lunar transfer performance.

7.2 Earth Orbit Return From Mars Transfer

7.2.1 Return Geometry

Return to a particular low Earth orbit such as the Space Station Freedom orbit is

constrained to the times when the orbit contains the return S-vector. If the S-vector

declination is less than the inclination of the Space Station orbit, there will be two particular

orbit line of nodes cases where the orbit contains the S-vector. If the S-vector declination is

greater, the Space Station orbit cannot contain the S-vector and a plane change is necessary

upon Earth return. Since the Space Station line of nodes regresses at about 7 degrees per

day, there are two times within a roughly 52-day period when return conditions are right.

This is a very onerous constraint on Mars mission design, since trajectory times need to be

selected to minimize transfer energies. Consequently, we have adopted a phased return

strategy that brings the crew directly to Earth in a crew recovery vehicle (CRV) and uses a

phasing orbit for Mars transfer vehicle rental.

7.2.2 Recovery Scenario

This recovery strategy is depicted in Figure 7-5. The crew returns directly to Earth via the

CRV, or deorbits from the elliptic capture orbit immediately after capture. The vehicle is

captured in a highly elliptic orbit such as the one depicted with a 24-hour period. The

capture orbit is at 28.5 degree inclination for eventual compatibility with the Space Station

orbit. One of two capture orbits can be selected; ordinarily we would select the one with the

least wait period. After the wait, the line of nodes of the capture orbit is the same as for the

Space Station orbit. At that time, an LTV is dispatched to the vehicle to refuel it for an

orbit-lowering burn. The NTP vehicle, for example, needs about 30 t. of hydrogen to
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return it to LEO. It is much more efficient to refuel than for the NTP vehicle to carry the

orbit-lowering propenant on the Mars mission.

7.3 Alternate Lunar Mission

7.3.1 Campsite

Capabilityfor an earlylunar man-tended surface mission isdescribed elsewhere in this

reportunder the "campsite" task.The campsite investigationconcluded thata turn-key

overnightlunarhabitatcould be builtfor20 t.totalcargo mass. Itisdesiredtodeliverthis

to the Moon on a singleHLV flight.This requirement somewhat exceeds the nominal

performance of an HLV using 2 ASRMs and a 4-SSME core stage.Estimated delivery

capabilityas a functionof mass to translunarinjection('ILI)and Isp of the lunar cargo

vehicleisshown in Figure 7-6.Based on thisfigure,we targeteda launcher performance

capabilityof 50 t.TLI.

7.3.2 Crew Mission

A modest crew mission can be accomplished at the 50 t.TLI level.Our preliminary

estimatesare:4.-personcrew returnvehicle(CRV) at5.5 t.,supportequipment (power &

consumables) forthe CRV inthe lunarstageatI t.,deliveredcargo 2 t.,and returnscience

payload including packaging 0.5 t.This leads to approximately 47 t.TLI requirement.

About I t.of thedeliveredcargo isneeded toresupplythecampsite with consumables.

The mission mode isdirectexpendable with only theCRV returnedtoEarth.There are no

parking orbitor lunarorbitconstraints;the mission can go anywhere on thevisiblelunar

surfaceany time and returnany time.Since the crew time inthe CRV isonly 3 days each

way, no additionaltransfercrew volume isrequired.The crew spends lunarsurfacetime in

thecampsite,which includesa solarflarestorm shelter.

7.3.3 Launcher Concept

Parametric scalingequations indicatethata launch vehicle with 2 ASRMs, 4 SSMEs,

standard ET capacity, and a third stage with about 200 t. propellant load and one SSME can

deliver 50 t. to TLI. This of course requires modification of the SSME for air start; two

starts are required.

V

v

D615-10031-1 60



r

The performance gain arises from significant r_lucfion in effective mass delivered to orbit

sincethe thirdstagestartsatroughly 3000 m/see lessthanorbitalvelocity.

If thisscheme works, itprovides an initial manned lunar capabilitywith a minimum of

development projects:CRV, lunarstage,and campsite module, sciencepayloads,and the

HLV thirdstageffitisnot accounted totheHLV program. No orbitaloperationsor nodes

arencecled.The lunarvehicleisintheLEV class,and could become theLEV forpermanent

lunarbase operations.

7.3.4 Science Candidates

Although thismission capabilityis modest, itis large compared to Apollo and could

support significantscience,including(I) an early technology demonstrator for a lunar

opticalinterferometer,(2) unpressurizcdroversfor lunargcoscience,and (3) small-scale

in-situmaterials use (ISMU) experiments. In addition,the campsite cargo delivery

capabilityof20 t.could bc used toderiverlargescienceand surfaceoperationssystems.

7.4 Power Beaming Presentation

During the month of February, effortwas spent on the power beaming portion of the

programmatics task. Brad Cothran and Brent Sherwood were invited to give a presentation

at Lewis Research Center for a power beaming kick-off meeting. The focus of the meeting

was technology for a future power beaming program. John Rather of NASA headquarters

was the meeting chairman. New charts from this presentation are provided in Appmdix A;

backup charts(surfacesystem designsand analysesfrom an earlierBoeing study forAmes

Research Center,NAS2-12 I08) arcnot included.

After the meeting we were asked by Whirr Brantley of MSFC to assist him in a power

beaming presentationto be given atheadquartersatthe f'n'stof March. Some chartswere

generatedand arcalsoincludedinthe attachments.The effortexpended on power beaming

isdirectedan Earth based power beam transmitterto an ElectricOrbitalTransfer Vehicle

and power for a Lunar Base. Computer Simulations necessary to generate data for the

EOTV analysisarc being finalized.Technology inputsforthepower beaming system were

alsoobtained from the workshop.
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• Currently an Earth based laser transmission system coupled with an
EOTV and or Lunar base, show the most promise for economic return.

• How does the performance (trip time and payload) of a power beam EOTV

in an inclined orbit vary with number and distribution of ground stations?

• Assuming that power transmission to the Moon gets first priority, and
considering typical weather and laser plant reliability, what is the beam
power availability for the EOTV and how much is it expected to vary?

• How does the life cycle cost of a lunar surface/EOTV power beaming
system trade with the conventional approach of cryogenic propulsion and
nuclear reactors power for the lunar surface.

J

FIGURE 7-1 POWER BEAMING:
APPLICATIONS

KEY ISSUES AND QUESTIONS - NEAR TERM

• Generates ground track over rotating Earth.

• Determines visibility and range from selected ground stations, up to 20 stations.
Minimum beam elevation angle is a parameter.

• Calculates power transfer based on range, wavelength, apertures, available
power and assumed beam quality factor.

• Numerically integrates orbit raising by thrust based on available power, input
mass, and Isp.

• Current orbit state feeds back to above steps for every integration step.

FIGURE 7-2 BEAM POWER EOTV SIMULATION

v
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5O 6O
Day No.

i
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•-IGUR.E 7-3 ORBIT RAISING wrrH THREE NORTH AMER/CAN srrEs

muammiam

• EOTV total mass 100 t.

• Rated jet power 10 megawatts (means about 15 MW RF power in beam)•

• Rated power achieved when EOTV can capture entire main lobe;

otherwise power reduced by inverse square law.

• 5000 seconds Isp

• Ground sites at KSC, Brownsville Texas, and Baja Calif.

• Transmitter apertures I00 m except KSC 150 m.

• EOTV aperture 250 m.

• Beams steerable 2 axes down to 30 ° above horizon.

• Orbit raising performance seems acceptable for as few as 3 ground stations.

• Even at 35 GHz, significant power loss due to beam spreading occurs
above 7000 km SMA (about 625 Inn altitude).

• Orbit eccentricity does not grow without limit.

• This is a "linear" problem, i.e. U2 the Isp, I12 the time;

I/2 the power-to-weight, twice the time, etc.

FIGURE 7-4 POWER BEAMING SIMULATION ASSUMPTIONS/RESULTS
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FIGURE 7-5 ECCV RECOMMENDED FOR CREW EARTH RETERN FROM MARS
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FIGURE 7-6 LUNAR CARGO DELIVERY ESTIMATE
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8. SUPPORT TO MSFC SEI ACTMTIES

8.1 Minimum-Sized Lunar Campsite Analysis

The campsite is a concept which allows early manned missions to the Lunar surface with

minimal infrastructure required. The purpose of this task was to do a detailed analysis of

the campsite and its support systems to get a preliminary mass statement. A baseline

campsite mission was defined for 30 days with a crew of four. Lowest mass options for

the Environmental Control and Life Support System (ECLSS) and the External Power

System were non-regenerative systems which require resupply for each mission. The

analysis included the following systems: Structures, Crew Systems, ECLSS, Internal

Electrical Power System, Internal Thermal Control System(TCS), DMS/Communications,

Internal Audio & Video, External TCS, External Power System, Science, and Storm

Shelter.

The results of this task are summarized in Figure 8. I and show that a minimum campsite

for 30 days with a crew of four will weigh about 20 metric tons. Power, mass, and

volume numbers were generated for each system and sources of information are sited.

Backup material for each system is included in Appendix B. There is a reasonable degree

of confidence in campsite weights for the following reasons:

a. Space Station Freedom PDR data was used for a majority of campsite components.

b. The analysis contains fairly low level detail.

c; A 15% growth margin was included. There are several areas where NASA policy

decisionswilldetermine specificrequirements (e.g.science,medical facility,and storm

shelter).Additional information on potentialmass reductions associatedwith various

options(e.g.crew of three,use of composite materials)can alsobe found in theappendix.
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Mass
Systems OqO

$_ 5,933

Volume
(m3)

106 Module*
7A_o_

Sy_'_Pro. 2.625
_f'1-_S 1,070 5

l-tin,hal F..PS 495 075
lntm'Ra[TC$ 405
DMS/__nmmn,ie_ri____ 545 28
IAV 50 G_5
C&T 100
_Yfm_d TCS 1.188

Power-Open eyde tiW 360 Exmml

._-_ 195
__*mce 1.565 8
Storm Shelter 3,465 12

15% Growth 1.945 13

Total 19,940 I_

Power

(kWe)

Cont Non-CAvg.

- 0.3

1.0 0.5
2.2 0.2
0.4
0.03 0.5
0.9 0.2
- 0_3

0.1

_z27 -
m m

0.65 1.0

m w

0.5) 3.O
5.3

Source/Comments

Total volume which coautim

|mernal corrmonent volumes

_Osumss_ ,_u_._not lll,_Atlcled.

2.2 kWe durinfi lunar day only.
Does not include fuel cell
reactant mass (1955 It4)

Deployment/Standby _ower

Does not include science or
storm shelter approach.

FIGURE 8-1 BASELINE CAMPSITE SUMMARY
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APPENDIX A

POWER BEAMING
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APPENDIX B

Minimum-Sized Lunar Campsite Analysis
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